Fraunhofer Diffraction Description In The Approximation Of The Light Field Theory

Author:

Budak Vladimir P.1,Efremenko Dmitry S.2,Smirnov Pavel A.1

Affiliation:

1. Moscow Power Engineering Institute (MPEI)

2. German Aerospace Center

Abstract

The wavelength is that natural scale that determines the applicability domains of the ray approximation and the wave approximation of light. If the change of the radiation power spatial density is significant at the wavelength scale, then we deal with the light diffraction phenomenon, which is a subject to the wave optics. Consider the diffraction phenomenon at the diaphragm. It is possible to distinguish the near zone with significant wave inhomogeneities (i.e. the Fresnel zone) and the far Fraunhofer diffraction zone, in which the wave becomes close to homogeneous (the so-called quasi-homogeneous) and the ray approximation is possible. The problem is that there is no explicit relationship between the radiance of the rays before and after diaphragm. Method for determining the boundary conditions for the radiance in the Fraunhofer zone through the radiance of the incident radiation is proposed in the paper. This approach for computing the radiance field in the Fraunhofer zone can be generalized to other problems of optics, thereby providing the possibility of using computationally efficient ray-approximation-based methods to determine the light fields.

Publisher

Redakcia Zhurnala Svetotekhnika LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3