Optical Communication on Scattered or Reflected Laser Radiation

Author:

Belov Vladimir1

Affiliation:

1. .E. ZUEV INSTITUTE OF ATMOSPHERIC OPTICS RUSSIAN ACADEMY OF SCIENCES

Abstract

Results of theoretical and experimental research of NLOS (NonLine of Sight) communication systems in the atmosphere, under water, and in mixed media based on publications of authors from China, Canada, Greece, the USA, Great Britain, Russia, and other countries are discussed in the present work. The theory of radiation transfer and the linear systems theory provide the basis for theoretical research. The radiation transfer equation is solved by the Monte–Carlo method in the singlescattering approximation. It is demonstrated that approximate methods are applicable when the average scattering multiplicity in open communication channels does not exceed 1. The Monte Carlo method is used to study the influence of opticalgeometric parameters of schemes of communication channels on the probabilities of communication errors, signal/noise ratios, limiting base lengths, attenuation of informationcarrying signals, and their superposition leading to communication errors. Examples of communications in the atmosphere in the UV range at distances up to 1300 m, in the visible range up to70 km, and under water up to 20 m are given. Search for optimal methods of signal modulation, development of software and hardware complexes for numerical simulation of the transfer properties of communication channels, refinement of analytical models of impulse transfer characteristics of noncoplanar schemes of bistatic optoelectronic communication systems (OECS), and research of the effect of winddriven sea waves and processes of radiation scattering in water are planned to study the efficiency of operation of the communication systems and to expand ranges of variations of the input NLOS and OECS parameters in the experiments carried out in natural water reservoirs.

Publisher

Redakcia Zhurnala Svetotekhnika LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3