Comparative Study of Solar Optical Fibre and Electrical Light for Daylighting in Tunnel Threshold Zone

Author:

Perdahci Canan1,Sogodok Yahya2

Affiliation:

1. University of Kocaeli

2. Islamic University of Technology, Dhaka

Abstract

In recent years, there has been a considerable increase in traffic accidents in the tunnel region, especially around the threshold and exit zones, due to the inappropriate lighting system of these zones; leading to the loss of humans properties and lives. Therefore, lighting designers strive to improve the illumination issues of the threshold and exit zones which bring about “black hole” and “white hole” effects, respectively. Several solutions are proposed: solar optical fibre lighting system as a natural lighting system and LED, fluorescent lighting system as the artificial lighting system. This paper aims to compare the natural and artificial lighting system to show which lighting system is better and the best solution to solve these issues. The previous study in the Huashuyan tunnel in China, where natural light, solar optical fibre was used to illuminate the threshold zone, is simulated in LITSTAR4D software using a customized HCL-TN LED luminaire of LITPA Сompany. The simulation result is compared with the previous result obtained when the solar optical fibre is used. The simulation outcome gave a satisfying result with an average luminance of 91.15 cd/m2, which is higher than the average luminance required by the threshold zone. However, it is less when compared to the average luminance of 181.31 cd/m2 produced by the solar optical fibre system. The overall uniformity of 0.42 is above the requirements in the CIE88:2004 standards.

Publisher

Redakcia Zhurnala Svetotekhnika LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3