Angiogenesis-promoting composite TPMS bone tissue engineering scaffold for mandibular defect regeneration

Author:

Zhu Hong,Lin Ziheng,Luan Qifei,Yang Yue,Chen Meiyi,Liu Xiaochuan,Wang Jinsi,Man Kenny,Zhang Jingying

Abstract

Mandibular defects severely impact the patient’s quality of life and are difficult problems to treat in the clinical setting. Due to the limitations of current gold-standard therapies, there is a tremendous need for tissue engineering approaches to meet this rising clinical demand. Injectable platelet-rich fibrin (I-PRF) containing a variety of pro-regenerative growth factors and stromal cell-derived factor-1 (SDF-1) has been shown to be beneficial in stimulating angiogenesis. In this study, we developed a three-cycle minimally curved biomimetic bone tissue engineering scaffold made of β-tricalcium phosphate, modified with I-PRF and SDF-1. I-PRF was loaded at a concentration of 5% onto a triply periodic minimal surface (TPMS) scaffold with a porosity of 70%. CCK-8 experiments and live-dead staining confirmed the scaffold’s good biocompatibility and its ability to promote cell proliferation. Wound healing assays showed that the TPMS scaffold loaded with I-PRF and SDF-1 (SIT) enhanced cell migration of MC3T3 cells. Moreover, angiogenesis experiments showed that the SIT scaffold promoted angiogenesis. Importantly, alkaline phosphatase and alizarin red staining confirmed that the bone scaffold accelerated MC3T3 cells’ osteogenic differentiation and mineralization. The SIT bone scaffold was then implanted into a rabbit mandible defect model. After a 2-month post-implantation period, micro- CT analysis revealed the growth of new bone tissue around the SIT construct, while histological analysis which included hematoxylin-eosin (H&E) staining and masson’s trichrome staining, alkaline phosphatase (ALP) staining, osteoprotegerin (OPG) staining demonstrated that the SIT scaffold substantially promoted the growth of a highly vascularized fibrous and bone tissue in the defect site. Taken together, these findings demonstrate the considerable potential of TPMS scaffolds loaded with I-PRF and SDF-1 in promoting the repair of mandible defects.

Publisher

AccScience Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3