Author:
Yuk Ju Chan,Nam Kyoung Hyup,Park Suk Hee
Abstract
Additive manufacturing has enabled the customization of biomedical systems, including transplantable medical devices, to achieve mechanical biocompatibility. For bone implants, patient-specific bone models must be used to evaluate the mechanical properties of implant compression and subsidence. This study proposes a methodology for designing and fabricating bone models to evaluate patient-specific bone implants. The method involves three-dimensional printing of infill-varied structure, with alternating high-low-high infill density regions, which undergo sequential deformation from the surficial region during compression with an implant. Based on this deformation behavior, the relationship between infill density parameters and mechanical properties was confirmed with the tunability of mechanical properties involving stiffness and failure load. The infill-varied design was applied to the inner structures of artificial vertebra models based on computed tomography scans for cadaver specimens. By tailoring the infill density conditions, the stiffness and failure load were approximated to those of the natural vertebrae. Furthermore, this infill-varied artificial vertebra could be used to evaluate additive-manufactured patient-specific implants. The patient-specific implant had greater resistance to subsidence than the commercial implant, suggesting the feasibility of a biomimicking bone model. The bone-mimetic infill-varied structure could be used to evaluate patient-specific manufactured implants and could be applied to other bone engineering structures with optimized biomechanical properties.