Droplet-based bioprinting for fabrication of tumor spheroids

Author:

Liu Congying,Chen Yuhe,Chen Huawei,Zhang Pengfei

Abstract

Cancer is now one of the leading causes of mortality worldwide, and the cancer treatment development is still slow due to the lack of efficient in vitro tumor models for studying tumorigenesis and facilitating drug development. Multicellular tumor spheroids can recapitulate the critical properties of tumors in vivo, including spatial organization, physiological responses, and metabolism, and are considered powerful platform for disease study and drug screening. Although several spheroid fabrication methods have been developed, most of them result in uncontrolled cell aggregations, yielding spheroids of variable size and function. Droplet-based bioprinting is capable of depositing cells in spatiotemporal manner so as to control the composition and distribution of printed biological constructs, thereby facilitating high-throughput fabrication of complicated and reproducible tumor spheroids. In this review, we introduce the progress of droplet-based bioprinting technology for the fabrication of tumor spheroids. First, different droplet-based bioprinting technologies are compared in terms of their strengths and shortcomings, which should be taken into account while fabricating tumor spheroids. Second, the latest advances in modeling distinct types of cancers and the enabled applications with tumor spheroids are summarized. Finally, we discuss the challenges and potentials revolving around the advances of bioprinting technology, improvement of spheroid quality, and integration of different technologies.

Publisher

AccScience Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3