Effect of lattice type on biomechanical and osseointegration properties of 3D-printed porous Ti6Al4V scaffolds

Author:

Liu Jiantao,Wang Kao,Wang Runqing,Yin Zhanhai,Zhou Xiaoling,Xu Aofei,Zhang Xiwei,Li Yiming,Wang Ruiyan,Zhang Shuyuan,Cheng Jun,Bian Weiguo,Li Jia,Ren Zhiwei,Sun Mengyuan,Yang Yin,Wang Dezhi,Ren Jing

Abstract

Porous structure is an efficient tool for optimizing the elastic modulus and osseointegration properties of titanium alloy materials. However, the investigations on pore shape remain scarce. In this study, we created porous Ti6Al4V scaffolds with a pore size of 600 &mu;m but different lattices (cubic pentagon, diamond, cuboctahedron). The mechanical and biological properties of the scaffolds were investigated in static simulation analysis, in vitro mechanical compression test, computational fluid dynamics, as well as cell and animal experiments. The results demonstrated that the calculated yield strength difference between the three Ti6Al4V porous scaffolds was negligible, at approximately 140 MPa, allowing them to match the strength requirements of human bones. The diamond scaffold has the lowest calculated elastic modulus (11.6 GPa), which is conducive for preventing stress shielding. The shear stress was largely concentrated in the diamond scaffold, and the stress range of 120&ndash;140 MPa accounted for the greatest share. The mouse MC3T3-E1 cells were found to attach to all three scaffolds, with the diamond scaffold displaying a higher degree of cell adherence. There was more proliferating cells on the diamond and cubic pentagon scaffolds than on the cuboctahedron scaffolds (P < 0.05). The diamond scaffold exhibited the highest alkaline phosphatase activity and calcium salt accumulation in cell differentiation tests. Besides, the expression of osteogenic genes on the diamond scaffold was higher than that on the cuboctahedron scaffold, the cubic pentagon scaffold displaying the lowest expression. The in vivo studies revealed that all three scaffolds fused well with the surrounding bone and that there was no loosening or movement of the prosthesis. Micro-computed tomography, corroborated by the staining results of hard tissues, revealed that the level of new bone formation was the highest in the diamond scaffold, followed by the cuboctahedron scaffold (P < 0.05). Taken together, the diamond scaffold is comparatively better at optimizing the elastic modulus and osseointegration properties of titanium alloy materials, and thus is a preferred choice for porous design.

Publisher

AccScience Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3