Application of biomaterial-based three-dimensional bioprinting for organ-on-a-chip fabrication

Author:

Kim Joeng Ju,Bae Mihyeon,Kim Jongmin,Cho Dong-Woo

Abstract

An organ-on-a-chip is a microfluidic device that simulates the microenvironment of organs, facilitating the study of human physiology and disease mechanisms. Through the integration of tissue engineering and micromachining technologies, it effectively manages the cellular microenvironment and implements tissue-specific functions and physiological responses with high fidelity. Several factors must be appropriately considered in the fabrication of an organ-on-a-chip, including the choice of biomaterials to simulate the extracellular matrix (ECM), selection of cells constituting the target organ, incorporation of humanized design to realize the primary function and structure of the organ, and the use of appropriate biofabrication methods to build a tissue-specific environment. Notably, three-dimensional (3D) bioprinting has emerged as a promising method for biofabricating organ-on-a-chip. Three-dimensional bioprinting offers versatility in adapting to various biomaterials with different physical properties, allowing precise control of 3D cell arrays and facilitating cyclic movements of fluidic flow within microfluidic platforms. These capabilities enable the precise fabrication of organ-on-a-chip that reflects tissue-specific functions and microenvironments. Additionally, 3D-bioprinted organ-on-a-chip can serve as a disease-on-a-chip platform, achieved through the implementation of pathophysiological environments and integration with devices such as bioreactors. Their significance in pharmacology research lies in their exceptional resemblance to the 3D microenvironment structure of actual organs, which are conducive for the validation of sequential mechanism of drug action. This review describes recent examples of organ-on-a-chip applications for various organs and state-of-the-art 3D bioprinting techniques employed in organ-on-a-chip fabrication. The discussion extends to the future prospects of this technology, encompassing aspects such as commercialization through mass production and its potential application in personalized medicine or drug-screening platforms. Serving as a relevant guide, this review offers insights for future research and developments in in vitro micromodel fabrication.

Publisher

AccScience Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3