Melt electrospinning writing PCL scaffolds after alkaline modification with outstanding cytocompatibility and osteoinduction

Author:

Shi Yubo,Wang Lei,Sun Liguo,Qiu Zhennan,Qu Xiaoli,Dang Jingyi,Zhang Zhao,He Jiankang,Fan Hongbin

Abstract

Melt electrospinning writing (MEW) is a promising three-dimensional (3D) printing technology that enables the creation of scaffolds with highly ordered microfibers. Polycaprolactone (PCL) is an ideal material for MEW scaffold fabrication due to its exceptional printability. However, its low cellular affinity can hinder its performance in bone tissue engineering. This study aimed to explore the potential of NaOH treatment as a means of enhancing the cytocompatibility and osteoinductive properties of PCL scaffolds. After modification with a NaOH solution, the physiochemical properties of the MEW PCL scaffold were analyzed. The surface of the scaffold was found to have nanopits and nanogrooves, which differed from the smooth surface of the PCL scaffold. Atomic force microscopy and automatic water contact angle assays revealed an increase in surface roughness and wettability, both of which were found to be beneficial for cell proliferation and adhesion. In vitro experiments demonstrated that the NaOH-treated surface was able to induce osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) via the integrinα2/β1-PI3K-Akt signaling pathway, which had not been previously observed. The study involved implanting PCL scaffold to repair a cranial defect. After 1 and 3 months of implantation, histological analysis and micro-computed tomography scans showed a higher amount of newly formed bone on the NaOH-treated PCL scaffolds compared to the PCL scaffold. The study concluded that NaOH treatment was a simple and effective way to enhance cellular affinity and osteoinductive property of MEW PCL scaffold. This strategy may provide a cost-efficient method for promoting bone regeneration.

Publisher

AccScience Publishing

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3