Hydrogel bioink formulation for 3D bioprinting: Sustained delivery of PDGF-BB and VEGF in biomimetic scaffolds for tendon partial rupture repair

Author:

Ruiz-Alonso Sandra,Ordoyo-Pascual Jorge,Lafuente-Merchan Markel,García-Villén Fátima,Sainz-Ramos Myriam,Gallego Idoia,Saenz- Del-Burgo Laura,L. Pedraz Jose

Abstract

In the evolving field of tissue engineering, the power of three-dimensional (3D) bioprinting technology can be harnessed by innovative methodologies to address the complex challenges of treating partial tendon injuries. In order to engineer a solution for this type of musculoskeletal injuries, a biomimetic bioink and a scaffold developed using 3D bioprinting technology and capable of delivering cells and growth factors were investigated. For the development of the bioink, a hydrogel type structure was selected based on a strategic combination of alginate, hyaluronic acid, gelatin, and fibrinogen. This tailored combination exhibited favorable rheological behavior and impeccable printability. The bioink, demonstrating promising characteristics, was then employed to fabricate both acellular scaffolds and tissue constructs. The structures possessed mechanical properties suitable and adequate for addressing partial tendon injuries and achieved a microenvironment that allowed good metabolic activity of tenocytes, maintenance of their phenotype, and overexpression of genes related to macromolecules of tendon extracellular matrix. Regarding growth factors delivery, vascular endothelial growth factor (VEGF165) and platelet-derived growth factor (PDGF-BB) were successfully incorporated into the bioink. Their release profile was thoroughly studied, and their activity once released was demonstrated. Together, these results suggest that the developed bioink and the resulting 3D structures can have an important impact on tendon partial injury therapies. The multifaceted capabilities of the bioink and the developed tissue constructs position them as crucial contributors to the advancement of tendon injury therapies, marking a significant stride toward enhanced patient outcomes and regenerative medicine practices.

Publisher

AccScience Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3