Synthetic biology enabling a shift from domination to partnership with natural space

Author:

de Lorenzo Víctor,de la Ossa Miguel

Abstract

Synthetic biology is a field of science that examines biological systems through the lens of engineering with the explicit objective of rationally designing live objects for either fundamental or biotechnological purposes. Yet, the same conceptual frame also embodies its exact counterpart: the biologization of engineering, i.e., looking at rationally designed systems through the lens – and with the tools – of biology and evolution. Such a creative tension between technology-driven design and biological processes has one of the most conspicuous battlegrounds in modern architecture. Such an edge occurs in a time dominated by the evidence of climate change, ramping environmental deterioration, and the ensuing instability and mass migrations. The most recent influences of biology in architecture have moved from the adoption of biologically inspired shapes and forms in many types of buildings to the incorporation of new biomaterials (often functionalized with qualities of interest) as assembly blocks, to the amalgamation of live materials with other construction items. Yet, the possibility opened by synthetic biology to redesign biological properties à la carte, including large-scale developmental programs, also unlocks the opportunity to rethink our interplay with space, not as one more step in the way of domination, but as a win-win conversation with the natural environment. While various contemporary architectural tendencies clearly move in that direction, we propose a radical approach–exemplified in the so-called Biosynthetic Towers Project–in which complex buildings are designed and erected entirely through biological programming rather than assembled through standard construction technology. To make this scenario a reality, we need not only tackle a dedicated research agenda in the synthetic biology side, but also develop a new attentive mindset toward the environment, not as a space to be conquered for our exclusive own sake, but as one scenario of sustainable co-existence with the rest of the natural world.

Publisher

AccScience Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3