Analysis of Key Differential Metabolites in Sunflower after Downy Mildew Infection

Author:

Zhu Kongyan,Bao Haizhu,Han Shengcai,Zhao Yajie,Wang Meng,Zhao Rong,Wen Yujie,Hu Haochi,Gao Julin

Abstract

The sunflower inbred line 33G was used as the experimental material, which was planted in the downy mildew disease nursery and the normal field, respectively, to examine changes in metabolites differences in metabolic pathways, and the mechanism of regulation of metabolic pathways in the process of sunflower susceptible to downy mildew. At the seedling stage, six biological replicates were collected from the leaves of diseased plants in the disease nursery and non-diseased plants in the normal field, respectively (S33G in the disease nursery and R33G in the normal field). The alterations in metabolites and metabolic pathways in susceptible and normal plants were studied by using LC/MS technology. The results demonstrate that in the S33G-R33G comparison group, 679 differentially expressed metabolites are screened, with 294 up-regulated metabolites and 385 down-regulated metabolites, and the differential metabolites are enriched to 58 metabolic pathways. Alkaloids, fatty acids, flavonoids, terpenoids, and polyketones are the most up-regulated differential metabolites, while lipids and lipid molecules, organic oxygen compounds, organic acids and derivatives, and other compounds are the most down-regulated differential metabolites. By comparison, it is discovered that arachidonic acid metabolism, diterpene biosynthesis, purine metabolism, oxidative phosphorylation, α-linolenic acid metabolism, citrate cycle (TCA cycle), nicotinate and nicotinamide metabolic pathways are considerably activated.

Publisher

Institutul Național de Cercetare Dezvoltare Agricolă Fundulea

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3