Exogenous Application of Ascorbic Acid to Induce Tolerance Against Salt Stress in Common Bean Plants

Author:

Aydogan CigdemORCID,Girici Zeynep,Turhan EceORCID

Abstract

Common beans have an important place in the world due to its high nutritional values in the human diet and with the largest cropping area among the legumes. Besides, they are named as quite sensitive to salt stress. Salinity is one of the utmost abiotic stress factors limiting agricultural production, which affects plant growth and development at different levels. Lately, exogenous applications of signalling and/or protective molecules to various parts of plants are used to combat salt stress before or at the time of stress. In this context, this research was conducted to assess the influence of foliar-applied ascorbic acid (AsA) on electrolyte leakage (EL), activity of antioxidative enzymes, total protein (TSP) content and protein profiles in the two common bean genotypes (salt-sensitive “Local Genotype” and salt-tolerant “Şeker Fasulye”) at early growth stage under salinity (0, 50, 100, 150 mM NaCl). The genotypes were exposed to salt stress from fully developed true leaf at the third nodes emerged stage for two weeks, meanwhile 3 mM AsA was foliar-applied every three days. Salt stress increased EL in both genotypes and exogenous AsA application decreased EL value especially in “Local Genotype”. Foliar-applied AsA generally reduced the adverse effects of NaCl on AsA content of both genotypes. Exogenous AsA application also increased the activities of catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) in the salt-stressed common bean plants and did not play a role in the TSP content. However, it has been determined that SDS-PAGE protein profiles represent adaptive mechanisms for dealing with excess salt in common bean genotypes. The results suggested that foliar-applied AsA was effective in reducing the adverse effects of salinity especially in relatively salt sensitive common bean genotype.

Publisher

Institutul Național de Cercetare Dezvoltare Agricolă Fundulea

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3