Identification of Faulty Operation in Photovoltaic Panels

Author:

Haba Cristian-GyozoORCID

Abstract

Increasing the efficiency of photovoltaic panels (PV) is one of the important goals of researchers worldwide in the field of renewable resources. The important results obtained in the case of finding new materials for the manufacturing of the panels to obtain the highest possible conversion efficiency must be doubled by research for developing methods for efficient real-time monitoring of PV operation in order to rapidly or in advance identify possible failures. This paper looks for some types of failures and how they can be identified as quickly as possible from the information coming from different sources, the most important being the PV monitored parameters, the PV control system parameters, and from different cloud services. One way to identify different types of failures is to use machine learning (ML) methods. In applying these methods, an important thing is the availability of a great number of good training data sets. In order to obtain such data sets, this paper aims to create a model of PV using Matlab, which is fed with both real data and data synthesized using fault models. A number of four simulation cases were considered which take into account the normal operation of the photovoltaic panels, their malfunction due to a failure (two different types of failures were considered), and the malfunction of the panels due to the appearance of the two types of failures simultaneously, using input data that was partially measured and partially generated in Matlab. The outputs of these model simulations will be used for training the ML model.

Publisher

Avanti Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3