Direct Numerical Simulation Modeling of Multidisciplinary Transport during Li-Ion Battery Charge/Discharge Processes

Author:

Jiang Fangming,Zeng Jianbang,Peng Peng,He Shaoyang

Abstract

We develop a direct numerical simulation (DNS) model of multidisciplinary transport coupled with electrochemical reactions during Li-ion battery charge/discharge processes based on the finite volume (FV) numerical technique. Different from macroscopic models, the DNS model is based on microstructure of composite electrodes and solves component-wise transport equations. During DNS, the input physical properties are intrinsic material properties, not effective physical properties for macroscopic models. Since the interface of solid and electrolyte phase is evidently differentiated in DNS, the occurrence of electrochemical reactions is prescribed exactly on the interface of solid and electrolyte phase. Therefore, the DNS model has the potential to unravel the underlying mesoscopic pore-scale mechanisms of multi-disciplinary transport coupled with electrochemical reactions and thus can provide insightful information of the involved processes, as well as enables the design and optimization of electrodes, including microstructures inside electrodes. One test case, in which the electrode microstructure is reconstructed with a purely random reconstruction method, is considered. Simulation results corroborate the validity of the DNS model.

Publisher

Avanti Publishers

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3