Thermal-Economic Analysis of an Organic Rankine Cycle System with Direct Evaporative Condenser

Author:

Yu Xiaohui,Geng Jiabao,Gao Zhi

Abstract

The organic Rankine cycle (ORC) system for power generation has proven to be an effective technology for low-temperature waste heat utilization. Accurate prediction and comprehensive comparison of system performance under different conditions are necessary for the development and application of suitable ORC configurations. This paper proposed an organic Rankine cycle (ORC) system using a direct evaporative condenser to realize performance enhancement and analyzed its dynamic performance based on the actual climatic condition, which is beneficial for the performance optimization of this system. This study begins with an introduction to the thermal economics model of the proposed system and evaluates the performance of the system based on the 3E (energy, exergy, economy) analysis method. Secondly, four candidate working fluids were compared and analyzed, leading to the selection of R142b as the best working fluid for the proposed system. Finally, the dynamic performance of the proposed system using the working fluid of R142b was analyzed based on the hourly environment temperature. The result showed that the net thermos-electric conversion efficiency of the system was negatively correlated with the ambient wet-bulb temperature. The annual average exergy efficiency of the system is about 65.79%, and the average exergy loss of the heat absorption unit, evaporative condenser, pump, and expander account for 61.07%, 6.92%, 2.99%, and 29.01% of the exergy loss of the system respectively. In the case 8760 h of operation per year, the payback period of the proposed ORC system using direct evaporative condenser is about 2.14 years.

Publisher

Avanti Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3