Catalytic Cracking of Vacuum Gas Oil and Used Lubricating Oil on Oil Shale Ash

Author:

Al-Ayed Omar

Abstract

In this research, Vacuum Gas Oil and/or used lubricating oil is subjected to thermal cracking (pyrolysis) after impregnation on oil shale ash to obtain lighter molecular weight components. The spent oil shale of the thermal cracking step is subjected to further heat treatment in open air at 950oC to react any organic compounds and mineral carbon to metal oxide. Used and/or fresh lubricating oils are impregnated on oil shale ash particles. Ash is soaked for 24 hours to allow absorption of the VGO or lubricating oils into the pores of the ash material. Oil shale ash which is known to contain several metal oxides such as CaO, SiO2, and lesser quantities of Fe2O3, Al2O3, K2O, Na2O, etc. possesses inherent catalytic nature to crack heavy hydrocarbons to produce lighter components.The absorbed Vacuum Gas Oil and/or lubricating oil inside the pores of the oil shale ash, is allowed to crack at 600oC temperature. Cracking of VGO is conducted in a fixed bed reactor under nitrogen, steam environments. The weight ratio of the absorbed oil into the pores to oil shale ash is 1:1 ratio.The particle size was in the range of 20-25 mm. The liquid products indicated 20 vol% falls in the kerosene fraction specifications where as Approximately 50 vol% is diesel cut. Residue which boils at higher than 370 oC constituted about 30 vol% of the liquid distillate.Steam presence in the reaction media affected the composition of the product as measured in density increase. The sulfur content of the produce is found to be 0.75 wt%.

Publisher

Avanti Publishers

Reference20 articles.

1. Vestraete JJ, Le Lannic K, Guibard I. Chem Eng Sci 2007; 62: 5402. http://dx.doi.org/10.1016/j.ces.2007.03.020

2. Linnard RE, Henton LM. Hydrocarbon Processing 1979; 58(9): 148.

3. Sequeira A, Sherman PB, Douciere JU, McBride EO. Hydrocarbon 1979; 58(9): 155.

4. Reynolds JW, Whisman ML, Thompson CJ. Hydrocarbon Processing 1977; 56 (9): 128.

5. Kim MS, Hwang JS, Kim HR. Journal of Environmental Science & Health, Part A: Environmental Science & Engineering & Toxic & Hazardous Substance Control 1997; 32 (4): 1014. http://dx.doi.org/10.1080/10934529709376593

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3