Effects of Magnetized, Chelated Iron Foliage Treatments on Foliar Physiology, Plant Growth and Drought Tolerance for Two Legume Species

Author:

Ramsey Craig

Abstract

A greenhouse study was conducted to determine the effects of foliar applications of magnetized, chelated liquid iron fertilizer for increasing the drought tolerance of two legumes. Study objectives were to determine the drought tolerance effects of four treatments on foliar gas exchange, soil moisture, and plant growth for velvet bean (Mucuns pruriens) and soybean (Gylcine max) plants. The four foliage treatments included applications with chelated liquid iron fertilizer (2.5 and 5%) with a conventional boom sprayer, with and without magnets in the spray lines. Physiological measurements were collected before foliar treatments and again after a 24-day deficit irrigation schedule. Physicochemical water properties were measured for each of the foliar treatments. Photosynthesis rates were 5.98, 2.04 and 3.19 µmol/m2/s for the control, non-magnetized and magnetized fertilizer treatments (2.5%), respectively, after completing the deficit irrigation schedule. Instantaneous water use efficiency (IWUE) was 0.60, 0.28 and 1.02 for the control, non-magnetized and magnetized fertilizer treatments (2.5%), respectively, after completing the deficit irrigation schedule. Photosynthesis and IWUE increased 56 and 263% for the magnetized fertilizer treatment (2.5%) compared to the non-magnetized foliar treatment, when averaged across both legume species. Photosynthesis and IWUE increased as electrical conductivity increased and oxidation reduction potential (ORP) decreased in absolute terms. A single foliar application resulted in aberrant physiological responses that are contrary to very widely held plant defense theories involving abiotic stressors. The single application improved the photosynthesis and water use efficiency for water stressed legumes emphasizing the need to better understand the relationships between water quality, plant bioenergetics, and stress physiology. Improved drought tolerance in row crops such as dry beans and soybeans, with a single magnetized fertilizer application, would be cost effective and easily adapted into current cropping systems. Interactions among physicochemical water properties, bioenergetics, plant metabolism, and crop stress physiology need to be further investigated in order to improve the quality of irrigation water to enhance drought tolerance of field crops.

Publisher

Avanti Publishers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3