Enzymatic Treatment of Cotton Fabric for Desizing

Author:

Rafikov Adham S.ORCID,Fayzullaeva Kamola,Shonakhunov Tulkin E.,Soyibova Dilnoza B. Qizi,Yasinskaya Nataliya N.

Abstract

The possibility of softening the conditions of biochemical treatment to remove the sizing agent from the surface of the fibers in the preparation of cotton fabric for dyeing has been studied. The efficiency of the α-amylase enzyme was evaluated by the amount of sugars reduced in the modifying solution, as well as by the capillarity of the samples of the treated fabrics. The enzyme used is active towards starch starting from a low concentration (0.02 g/l) and low temperature (32°C). The effect of enzyme concentration from 0.02 to 6.0 g/l, solution pH from 4.5 to 8.5, temperature from 32 to 60°C on the amount of sugars in the solution after enzymatic treatment, and fabric capillarity was determined. Almost complete removal of sizing from the surface of fibers of the original fabric was achieved under moderate and mild processing conditions: α-amylase concentration 1.0÷5.0 g/l, pH=6.0÷7.0, temperature 50-55°C. Based on the dependence of the logarithm of the reaction rate on the reciprocal temperature, the activation energy of the desizing reaction was calculated, which turned out to be equal to E = 17.5 kJ/mol. The low activation energy shows that the desizing process is carried out under energetically favorable conditions with moderate heating. The surface morphology of treated and untreated samples of cotton fabric was studied by scanning electron microscopy. The removal of the adhesive substance from the surface of the fibers, the separation of individual fibers, and the smoothing of the fabric surface after treatment with an amylase solution were recorded.

Publisher

Avanti Publishers

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3