Optimization of Tuned Mass Damper for Submerged Floating Tunnel with Frequency-Domain Dynamics Simulation

Author:

Jin ChungkukORCID,Kim Sung-JaeORCID,Kim MooHyun

Abstract

In this study, the Tuned Mass Damper (TMD) optimization is carried out to reduce the resonant motion of Submerged Floating Tunnel (SFT) under wave excitations. The SFT dynamics is evaluated in frequency domain; a new approach to cost-effectively optimizing TMD parameters for a moored system is suggested. Discrete-Module-Beam (DMB) method is used to model the Tunnel; mooring lines are included as equivalent stiffness matrix through static-offset tests by the fully coupled model. Since the frequency-domain dynamics simulation model is employed, a significant reduction in optimization time can be achieved. TMD is installed at the tunnel’s mid-length to mitigate the lateral motion of the Tunnel and coupled with the Tunnel with translational and rotational springs and dampers. The optimization process for TMD parameters is performed through the Genetic Algorithm (GA). The GA generates the TMD mass and spring and damping coefficients. The dynamics simulation is performed under wave conditions and this process is repeated until the stopping criteria is satisfied. Results demonstrate that TMD with optimized parameters significantly reduces the lateral motion, especially near the system’s lowest lateral natural frequency. This frequency-domain optimization also works as intended with significantly decreased optimization time.

Publisher

Avanti Publishers

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3