Publisher
Japan Society for Precision Engineering
Reference12 articles.
1. 1) T. Defard, A. Setkov, A. Loesch, R. Audigier: PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Localization, International Conference on Pattern Recognition, (2021) 475.
2. 2) O. Rippel, P. Mertens, D. Merhof: Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection, International Conference on Pattern Recognition, (2021) 6726.
3. 3) K. Roth, L. Pemula, J. Zepeda, B. Schölkopf, T. Brox, P. Gehler: Towards total recall in industrial anomaly detection, IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2022) 14318.
4. 4) V. Zavrtanik, M. Kristan, D. Skočaj: DRAEM - A Discriminatively Trained Reconstruction Embedding for Surface Anomaly Detection, IEEE/CVF International Conference on Computer Vision, (2021) 8330.
5. 5) C.-L. Li, K. Sohn, J. Yoon, T. Pfister: CutPaste: Self-Supervised Learning for Anomaly Detection and Localization, IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021) 9664.