Agronomic Bio-fortification of Rice and Maize with Iron and Zinc: A Review

Author:

Jan Bisma,Bhat Tauseef A.,Sheikh Tahir A.,Wani Owais Ali,Bhat M. Anwar,Nazir Ajaz,Fayaz Suhail,Mushtaq Tabish,Farooq Anees,Wani Suffiya,Rashid Aabiroo

Abstract

Earlier, the agriculture system was oriented more towards achieving higher agronomic yields than the nutritional quality of food. Green revolution significantly enhanced the crop production primarily rice, wheat and maize production was boosted to meet the energy needs of growing population. As a consequence of the predominance of cereal-based staples that are fundamentally low in micronutrients, specifically Zn and Fe, more than 2 billion people worldwide suffer from an insidious type of deficiency known as micronutrient malnutrition. Just moderate amounts of micronutrient malnutrition can affect cognitive development, reduce disease resistance and increase the risk of women dying during childbirth. The approach to micronutrient fertilization has been shown to improve the yield and nutritional content of the staples. Agronomic biofortification provides an immediate and effective method to enhance accumulation of micronutrients especially Zn and Fe in cereals. An adequate amount of plant available micronutrients is a prime requisite to ensure adequate nutrient uptake. Most of the cereals are grown in soils deficit in Zn and under reduced conditions of rice ecosystem, its availability is decreased due to formation of less soluble Zn complexes with sulphate and carbonate. The form of fertilizer used, timing and method of application is critical for the enhancement of the grain quality of Zn and Fe. The effectiveness of agronomic biofortification can be enhanced by application of synthetic chelated micronutrient fertilizers and/or organic fertilizers fortified with micronutrients in combination with NPK ensuring proper nourishment of crops with adequate nutrient supply by slow release of nutrients in soil solution. Further, the response of foliar application has shown better results than soil application. Previous studies suggest that Zn fertilization not only enhances Zn concentration in grain but also improves the overall performance of maize crop. Agronomic biofortification of crops is advantageous in terms of accessibility, rapid result, ease in application and high sustainability.

Publisher

Sciencedomain International

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3