An Improved Two-states Cyclical Dynamic Model for Plastic Waste Management

Author:

Addor John Awuah,Wiah Eric Neebo,Alao Felix Illesanmi

Abstract

The panacea to the global challenge of plastic waste management is the transition towards plastic circular economy, which can be sustained through tailor-made management strategies. However, cutting-edge strategic solutions are constrained by inadequate data due to inadequate plastic-based predictive models. This paper presents an improved version of an existing two-state cyclical dynamic closed (CDC) model. The CDC model was formulated using a homogeneous linear system of ordinary differential equations (ODEs) and was modified by introducing a separation target which plays an essential role in determining both quantity and quality of recycled plastics. The Laplace transforms technique was the main analytic solution technique used. Values of the parameters were computed using the global plastic data applied for the existing CDC model, and with a technique termed the nth-order product derivative proximity, alternating pairs of initial values were selected each for the global annual plastic production and the global annual plastic waste generation. The validation process of the new CDC model was accomplished using the root mean squared error (RMSE) and the mean average percentage error (MAPE), which are measures of the model’s predictive power. Comparatively, RMSEs of the new CDC model were smaller than the RMSEs of the existing CDC model. MAPEs for the new CDC model were 6.5%  and 7% (as against 13% and 18% in the existing model) respectively for the global annual plastic: production and waste generation, indicating that the new model predicts with 93.5% and 93% degrees of accuracy respectively for the global annual plastic: production and waste generation. Therefore, the new CDC model has outperformed the existing CDC model in terms of predictive power, and thus, establishing the new CDC model as an improved version of the existing one. The model can therefore make impactful policy decisions for sustainable plastic waste management thereby aiding to achieve the transition towards circular economy in plastic waste management.

Publisher

Sciencedomain International

Subject

Industrial and Manufacturing Engineering,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3