Investigation of the Anti-TB Potential of Selected Phytochemicals of Nigella Sativa using Molecular Docking Approach

Author:

Mir Shabir Ahmad

Abstract

Background: Tuberculosis (TB) is one of the foremost causes of human mortality across the world. In general, it is a curable disease and several drugs are available in market for its treatment, however, because of the drug resistance to the currently available anti-TB drugs, the development and/or discovery of new drugs with better efficacy against TB cannot be overlooked. In the present study, we performed virtual screening of the major phytochemicals of the plant Nigella sativa for investigating their potential to inhibit some novel drug targets of Mycobacterium tuberculosis, which included- pantothenate kinase, type 1 (MtPanK), β-ketoacyl ACP synthase I (MtKasA), and decaprenylphosphoryl-β-D-ribose 2′-epimerase 1 (MtDprE1). Methods: The screening of the phytochemicals was investigated through a molecular docking approach using Auto dock vina and the molecular interactions in the protein-ligand complexes were visualized and analysed through PyMol and BioVia Discovery Studio Visualizer. Results: Our in silico observations reveal that, out of the nine selected phytochemicals screened, five compounds, namely α-hederin, dithymoquinone, nigellidine, thymoquinone and thymol binded to one or more of the selected target enzymes with significant docking scores. α-hederin binded to MtDprE1 and MtKasA with a docking score of −8.5kcal/mol and −7.9kcal/mol, respectively, dithymoquinone binded to MtKasA, MtDprE1 and MtPanK with a docking score of −6.5kcal/mol, −8.2kcal/mol and −9.2kcal/mol, respectively and nigellidine binded to MtDprE1 and MtPanK with a docking score of −8.1kcal/mol and −8.2kcal/mol, respectively. Further, thymol as well as thymoquinone were observed to bind MtKasA with a docking score of −6.6kcal/mol. Conclusions: The results of our study indicate that the five phytochemicals of N. sativa, including α-hederin, dithymoquinone, nigellidine, thymoquinone and thymol, are worth studying further for their anti-TB activity, however, additional biological studies are warranted to validate these findings.

Publisher

Sciencedomain International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3