Author:
Sattu Hemalatha,Nerella Indira rani,Tangeda Saritha Jyostna
Abstract
Aim: In our earlier research, we have synthesized series of substituted 1-(2, 5-dimethyl thiophene-3yl)-(4-substituted phenyl)-2-propene-1-one derivatives and evaluated them for their anti-bacterial and antifungal activity. In recent years, chalcone derivatives are proved for their varied pharmacological effects ranging from antimicrobial activity to anti-cancer effects. In this study, we have hypothesized the efficiency of our earlier synthesized anti-bacterial and antifungal chalcone derivatives for their potential inhibition of epidermal growth factor receptor protein (EGFR), through molecular docking studies.
Methodology: Molecular docking simulation studies are performed using the Glide XP module of Schrodinger Suite and ligand binding energies are also calculated.
Results: Molecular docking studies of the selected compounds against EGFR revealed docking scores ranging from -6.746 (compound 5) to -5.681 (compound 3) and also provided insight into binding conformations of the ligands in the EGFR protein environment. Additionally, molecular property and Absorption, Distribution, Metabolism, and Excretion (ADME) predictor analysis is also performed for the dataset ligands, which further provided the probable explanation for the binding potentials.
Conclusion: Among all the tested dataset ligands, compound 5 has shown the highest dock score (-6.746) with better ADME profiles. Binding energies in the protein-ligand interactions explain how fit the ligand binds with the target protein. Molecular docking studies of these anti-bacterial, antifungal chalcone derivatives provided deeper insights in understanding the probable conformations of these tested ligands in the EGFR protein environment.
Publisher
Sciencedomain International