Synthesis, Characterization of Some New 1,3,5-Trisubstituted Pyrazole Derivatives for Their Antifungal Potential

Author:

Sharma Anupam,Jain Alok Pal,Gangwar Mayank

Abstract

The aim of the study was to develop, synthesis, and characterise a novel 1,3,5-trisubstituted-2-pyrazolines derivative, as well as to evaluate its antifungal activity. The reaction of chalcone derivatives with succinic hydrazide in the presence of pyridine yielded the 1,3,5-tri-substituted-2-pyrazolines derivatives. Total 20 compounds has been synthesized and characterized by the IR, 1HNMR and mass spectral analysis. Antifungal activity of the compounds carried out onfour fungal strains i.e. Saccharomyces cerevisiae, A. Niger, C. Albicans and R. Oryzae in two different concentration i.e. 50 and 100 µg/ml by Agar-diffusion method using Cup-plate method. The usual antifungal medicine was ketoconazole. All of the synthesized 1,3,5-trisubstituted pyrazole compounds (ME1-ME8, CL1-CL8, BR1-BR4) showed medium to best action against examined organisms, according to antifungal activity data. The antifungal activity of compounds against fungal strains (Saccharomyces cerevisiae, A. Niger, Candida albicans, and R. Oryzae) revealed the following order of action: CL-4 > BR-4 > CL-3 > CL-2 > ME-3> ME-2> CL-5 > CL-6 > ME-4 > ME-5 > ME-6 > ME-7 > CL-7 > CL-8>ME-8 >CL-1 >ME-1 > CL-5 > CL-6 > ME-4 > ME-5 > ME-6 > ME-7 > CL-7 > CL-8>ME-8 >CL-1 >ME-1. Electronegative groups (Br, Cl, F, and NO2) must be present at the third and fifth positions of the 1,3,5-pyrazoline ring for significant antifungal action. The presence of an electronegative group at the third and fifth positions may be required for the best action against bacterial and fungal strains, however the addition of F, NO2 has demonstrated moderate activity, while the substitution of methyl and methoxy  groups may reduce the activity. The synthesized compounds in the BR-1 through BR-4 class are the most active.

Publisher

Sciencedomain International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3