Formulation and Evaluation of Ethyl Cellulose Based Fluconazole Nanosponges

Author:

Yadav Jayadeep R.,Jagdale Swati C.,Chabukswar Anuruddha R.

Abstract

Background and Objective: Fluconazole (FLZ) is a novel triazole antifungistatic drug; topical administration of FLZ resulted in systemic absorption and skin inflammation, and thereby failed to achieve mycological eradication, resulting in low patient compliance and undermining therapy effectiveness. The aim of this study was to use the emulsion solvent evaporation technique to create FLZ-loaded nanosponges (NSs) using ethylcellulose (EC) and polyvinyl alcohol (PVA) as a stabiliser. Materials and Method: By varying the drug concentration (FLZ), EC, and PVA, four formulations were developed, each of which was then optimized through particle characterization (polydispersity index (PDI), scanning electron microscopy (SEM), zeta potential (ZP), drug entrapment, and loading efficiency). Results: SEM (Scanning Electron Microscope) analysis showed that the particle sizes of FLZ inclusion complexes ranged from 150 2 to 250 5 nm. The ZP was strong enough to produce stable formulations. FLZ was released from the nano sponges in a regulated manner for 24 hours in both in vitro and in vivo experiments. FTIR and DSC were used to validate the association of the FLZ with the nanosponges. The crystalline nature of FLZ was modified to an amorphous state due to the complexation with the nanosponges, according to an XRPD analysis. The FLZ nanosponges were found to be stable in a stability analysis. Conclusion: Therefore, ethyl cellulose-based nanosponges provide a novel method for controlling the release of FLZ for antifungal effects.

Publisher

Sciencedomain International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3