Improved Efficacy and Stability of Silymarin Loaded Nanocochleates Over Liposomes for the Treatment of Skin Diseases

Author:

Rub Rukhsana,Munot Neha,Wadate Akshay

Abstract

Aim: Silymarin, a complex polyphenolic component mixture with anti-oxidant, anti-inflammatory, and membrane-stabilizing property is being investigated in several dermatological conditions. Present research aims to evaluate potential of silymarin loaded nanocochleates and liposomal  topical application for treating chronic skin diseases. Study Design: Silymarin loaded liposomes and nanocochleates were formulated and optimized using Design Expert software. Different invitro and exvivo tests were performed to compare their performance. Place and Duration of Study: The study was conducted in Smt. Kashibai Navale College of Pharmacy, Pune, India, between January 2019 till February 2020. Methodology: Liposomes were prepared using ethanol injection method and further treated with calcium chloride to form nanocochleates by trapping method. Design of experiments (32 Factorial Design) was used for optimization of nanocochleates. Cell line studies (HaCaT cell lines) and short term stability studies were performed to compare the efficacy and stability respectively. Results: Particle size, entrapment efficiency and drug deposition in Wistar Rat Skin was found to be statistically significant for nanocochleates over liposomes proving superiority of cochleates. Both the carriers sustained release of silymarin for 24h. Antimicrobial efficacy of nanocochleates against E.coli and S.aureus was significant. Inhibition of hyper proliferation of HaCaT cell lines (key mechanism by which most of the antipsoriatic drugs act) demonstrated the superiority of nanocochleates over liposomes.The nanocochleates also displayed better stability compared to liposomes due to  decreased entrapment efficacy and  leakage of drug. Conclusion: Silymarin loaded Nanocochleates could prove as a promising topical drug delivery system for the treatment of chronic skin diseases like psoriasis.

Publisher

Sciencedomain International

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3