Five Different Noise Intensities Robustly Affects Corticosterone, Gastrin and Endothelin-1 Responses and Initiated Gastric Tissue Damage in Wistar Rats

Author:

Mehra Ravinder Kumar,Prashad Mahesh,Sharma Dinesh Kumar,Kumar Prevesh

Abstract

Likewise other stress response noise stress is also affects the homeostasis of the biological systems and produce stress response in the form of Corticosterone to prevent the damage but if the exposure is longer with higher magnitude it may disrupt the robust ability of the homeostasis and could produce the damage to the biological systems. The goal of our study was to see how five different noise intensities affected stomach tissue damage. 42 healthy rats were divided into five different stress exposure group, normal control (NC) and sham control (SC) groups. Noise stress exposure was delivered for 1 hour per day continued for 30 days in all five noise exposed groups by specially designed noise chamber whereas sham control group of animals kept in noise chamber for 1 hour per day continued for 30 days without noise stress exposure and control group of animals neither exposed to noise stress of any intensities and nor kept in noise chamber without noise but remain in the same experimental room in their homecage for 30 days respectively. Results of the study showed that animals exposed to 60 and 80 dB noise give habituated and not significant Corticosterone, Gastrin and Endothelin-1 responses compared to NC and SC groups while animals exposed to 100, 120 and 140 dB had significantly higher Corticosterone, Gastrin and Endothelin-1 response and also chronic gastric damage was observed compared to later two noise exposed groups respectively. Study concluded that not only higher but also lower noise intensities also initiated the gastric damage even after the adaptation.

Publisher

Sciencedomain International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3