Evaluation of Metformin Hydrochloride Floating Drug Delivery System: In vitro Study and In vivo Prediction

Author:

Pawar Rajesh,Jagdale Swati

Abstract

Aim: This research work was aimed to evaluate Metformin hydrochloride (MH) floating dosage form by In vitro evaluation/In vivo prediction and to evaluate it’s predictability through it’s application during the R&D using Insilico technique in WINONLIN Software. MH was examined as a model drug, which is a biguanide and is an hypoglycemic agent administered orally. The study was aimed to determine the the systemic concentrations of MH using In-vivo prediction. Study Design: Fabrication and assessment of Metformin hydrochloride floating drug delivery system: In Vitro evaluation /In Vivo prediction. Biorelevant media was selected for dissolution profile of 12 units of dosage form. Software assisted program used for data feeding and results output. Methodology: The absorption window for MH is the upper portion of the small gut in which the GI absorption is complete after 6 h. Hence gastroretentive formulation was developed and validity of dissolution study was extended by In vivo pharmacokinetic prediction using WinNonlin Software. A mechanistic oral absorption model was built in Phoenix WinNonlin® software. In the presented work, significant yet crucial, gastrointestinal (GI) variables are considered for biopredictive dissolution testing to account for a valuable input for physiologically-based pharmacokinetic (PBPK) platform programs. While simulations are performed and mechanistic insights are gained from such simulations from the WinNonlin program. Results: These floating tablets were observed for In vitro release and studied for In vivo pharmacokinetic prediction. From the obtained values, a meaningful In vivo prediction was done. interestingly from the results attained floating tablets showed sustained drug release and extended drug absorbed in 24h. Fascinatingly, from the data it was proved that drug formulation resides for desired time. The absorption of MH from the developed CR tablet was 1.4 fold higher than its marketed tablet and it had higher AUC0–t values than the marketed product which indicates superior bioavailability of test product compared to marketed tablet with similar dose in Invivo pharmacokinetic prediction. The mean value of biological half-life (t1/2) and Tmax of MH from test formulation is two times more, Test product has shown higher MRT, showing that the drug is maintained longer in the body in comparison to marketed product indicates controlled absorption. Conclusion: Here we concluded that, a comparative prediction pharmacokinetic evaluation of the fabricated controlled release tablets and the marketed formulation indicates that the fabricated controlled release tablets are well absorbed and the degree of absorption is greater than that of the marketed ER formulation with larger gastric residence time.

Publisher

Sciencedomain International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3