Biofilm Formation and Multiplex PCR detection of icaABCD Operon in Staphylococcus capitis

Author:

Abdul-Aziz AziyahORCID,Abdullah Mohamad Faiz Foong,Mohamad Sharifah Aminah Syed

Abstract

Aims: The ability to form biofilm is a major virulence factor in the virulence of the Coagulase negative Staphylococcus (CoNS) group of bacteria. Being the most predominant member of CoNS, the ability of S. epidermidis in causing biofilm-associated infections has been well established. On the other hand, S. capitis and has always been regard as a non-pathogenic species although recently it was found to be responsible in a variety of infections. Hence, this study aimed to determine the biofilm formation capabilities and the presence of icaABCD genes in clinical isolates of S. capitis, which have emerged as an important opportunistic pathogen in clinical settings. Methodology: S. capitis was isolated and identified from 17 out of 200 clinical samples. Biofilm formation assay was performed quantitatively using a microtitre plate method. Mulitplex PCR primers for icaABCD genes were designed from DNA sequences coding for the icaA, B, C, and D structural genes of S capitis JF930147.1 which was compared together with five other species of Staphylococcus. Amplification of the icaABCD genes was performed using the designated primers. Results: From the 17 strains of S. capitis clinical isolates, 14 were identified as S. capitis subsp capitis while the remaining three were identified as S. capitis subsp ureolyticus. Except for two of the S. capitis subsp capitis isolates, the remaining strains were able to form biofilm, with majority of them were strong biofilm formers. Multiplex PCR was successful in amplifying the four icaABCD genes which was demonstrated in all the S. capitis isolates, including the two non-biofilm forming isolates. Conclusion: Majority of the S. capitis isolates were able to form biofilm phenotypically suggesting the possibility in causing opportunistic infections through indwelling medical devices. Multiplex PCR however was able to detect the presence of the icaABCD genes in all the S. capitis isolates. This suggests that the biofilm assessment on microtitre plate is not a definitive tool in determining the production of polysaccharide intercellular adhesion (PIA) but the production of the icaABCD genes could be a better assessment in determining biofilm production in Staphylococcus.

Publisher

Sciencedomain International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3