Measurement Extraction using Fuzzy Set Rule for Segmented Features of Brain Tumor in T-1 & T-2 Weighted Images

Author:

Singh Manini,Nigam Vineeta Saxena

Abstract

Aims: For neuro radiologist it becomes hard to accumulate features with minute dissimilarity in plenty of cases, so it is hard to make a correct decision. Therefore, the need is to generate some rules for prediction of degree of malignancy in tumors. Design: The pre-operative analysis of brain lesion is based on magnetic resonance imaging and clinical data set. Analysis of MRI finding and medical data set gives the relationship between regular pattern & interpretable pattern to acquire desired degree of malignancy.  Until now the edge detection, segmentation and morphological operators are used to detect exact location of brain tumor. As uncertainty exits; here fuzzy set rules are evaluated to predict the degree by which a benign tumor is converted into malignant tumor. Methods: Fuzzy extraction theory has been applied along with image progressing algorithms like edge detection; segmentation and morphological operation based on spectral transformation are used to detect exact location of brain tumor to predict the degree malignancy. Step of Image analysis: a) Preprocessing: input 2D gif or tiff image b) Filtering of image using Anisodiff filter c) Thresholding, applying morphological operators and tumor line detection. Statistical Analysis used: A diagnostic feature includes blood flow, mass effect, temperature, calcification, edema, signal intensity & so on. Numerous features can be taken into consideration for better outcome. Results: Fuzzy set rule is one of the promising methods along with MR finding to achieve accuracy higher than 85% by considering few of the medical symptoms on different features. Conclusions: This research is limited to specific region and type of glioma and thus cannot deal heterogeneous cases in which situation is much complicated. The result evaluated here are usually retroactive. As studied, by analyzing signal intensity of T-1 & T-2 weighted image alone, accuracy of 60-70% has been achieved. So in order to get higher accuracy feature like cyst generation, oedema, blood supply are included to achieve 85% accuracy.

Publisher

Sciencedomain International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3