FEM Based Elasto-Electric Analysis of Elastomers for Pharmaceutical Applications

Author:

Nazeer Rumesa,Afridi Mehwish,Marvi .,Alam Muhammad Umair,Ali Badar,Alvi Sana Afzal,Iqbal Kashif

Abstract

Elastomer materials are very important due to weak intermolecular forces and very low Young's modulus and have high failure strain. Due to these properties, they are used in a large number of applications especially in pharmaceutical industry and medical / surgical equipment etc. Electrostatic discharge on such material is a potential hazard for the operator who is dealing with elastomers.  In the research presented here, a detailed analysis on the elasto-electric analysis of 03x elastomers is analyzed in detail by using Finite Element Method (FEM). A CAD model is generated in accordance with an early research on elasto-electric study of Silicon material. Subsequently FEM based analysis is carried out to study vital electrostatics properties like Surface deformation and surface potential distribution developed on the application of external forces on 03x types of elastomers i.e. Silicon Rubber, Nitrile (NBR) and Poly Vinyl Chloride (PVC). The whole study is carried out in COMSOL multi-physics software. Analysis showed that the electric field developed on the surface of the elastomer is dependent on the deformation on non-linear nature and depends upon the material properties. FEM based results show that Silicon Rubber develops maximum deformation and electric potential of three chosen materials up to 50mm and 3150V respectively. Based on the conducted analysis, Silicon Rubber is widely recommended for its utilization in Pharmaceutical applications requiring electrostatics.

Publisher

Sciencedomain International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3