A Detailed Analysis of Benchmark Datasets for Network Intrusion Detection System

Author:

Ghurab Mossa,Gaphari Ghaleb,Alshami Faisal,Alshamy Reem,Othman Suad

Abstract

The enormous increase in the use of the Internet in daily life has provided an opportunity for the intruder attempt to compromise the security principles of availability, confidentiality, and integrity. As a result, organizations are working to increase the level of security by using attack detection techniques such as Network Intrusion Detection System (NIDS), which monitors and analyzes network flow and attacks detection. There are a lot of researches proposed to develop the NIDS and depend on the dataset for the evaluation. Datasets allow evaluating the ability in detecting intrusion behavior. This paper introduces a detailed analysis of benchmark and recent datasets for NIDS. Specifically, we describe eight well-known datasets that include: KDD99, NSL-KDD, KYOTO 2006+, ISCX2012, UNSW-NB 15, CIDDS-001, CICIDS2017, and CSE-CIC-IDS2018. For each dataset, we provide a detailed analysis of its instances, features, classes, and the nature of the features. The main objective of this paper is to offer overviews of the datasets are available for the NIDS and what each dataset is comprised of. Furthermore, some recommendations were made to use network-based datasets.

Publisher

Sciencedomain International

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A configurable anonymisation approach for network flow data: Balancing utility and privacy;Computers and Electrical Engineering;2024-09

2. Deep learning based network intrusion detection system: a systematic literature review and future scopes;International Journal of Information Security;2024-08-02

3. Enabling Robust Intrusion Detection in Network Traffic through an Integrated Machine Learning Framework;2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN);2024-07-03

4. DoS/DDoS attacks in Software Defined Networks: Current situation, challenges and future directions;Computer Communications;2024-06

5. A Detailed Comparative Study of AI-Based Intrusion Detection System for Smart Cities;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3