A Comprehensive Survey for Hadoop Distributed File System

Author:

Merceedi Karwan Jameel,Sabry Nareen Abdulla

Abstract

In the last few days, data and the internet have become increasingly growing, occurring in big data. For these problems, there are many software frameworks used to increase the performance of the distributed system. This software is used for available ample data storage. One of the most beneficial software frameworks used to utilize data in distributed systems is Hadoop. This software creates machine clustering and formatting the work between them. Hadoop consists of two major components: Hadoop Distributed File System (HDFS) and Map Reduce (MR). By Hadoop, we can process, count, and distribute each word in a large file and know the number of affecting for each of them. The HDFS is designed to effectively store and transmit colossal data sets to high-bandwidth user applications. The differences between this and other file systems provided are relevant. HDFS is intended for low-cost hardware and is exceptionally tolerant to defects. Thousands of computers in a vast cluster both have directly associated storage functions and user programmers. The resource scales with demand while being cost-effective in all sizes by distributing storage and calculation through numerous servers. Depending on the above characteristics of the HDFS, many researchers worked in this field trying to enhance the performance and efficiency of the addressed file system to be one of the most active cloud systems. This paper offers an adequate study to review the essential investigations as a trend beneficial for researchers wishing to operate in such a system. The basic ideas and features of the investigated experiments were taken into account to have a robust comparison, which simplifies the selection for future researchers in this subject. According to many authors, this paper will explain what Hadoop is and its architectures, how it works, and its performance analysis in a distributed systems. In addition, assessing each Writing and compare with each other.

Publisher

Sciencedomain International

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3