Seasonal Rainfall Prediction in Lagos, Nigeria Using Artificial Neural Network

Author:

Ayodele Adigun Paul,Precious Ebiendele Eromosele

Abstract

Deliberating the importance of rainfall in determining process such as agriculture, flood and water management, these study aim at evaluation of non-linear techniques on seasonal rainfall prediction (SRP). One of the non-linear method widely used is the Artificial Neural Networks (ANN) approach which has the ability of mapping between input and output patterns. The complexity of the atmospheric processes that generate rainfall makes quantitative forecasting of rainfall an extremely, difficult task. The research goal is to train/develop Artificial Neural Network model using backward propagation algorithm to predict seasonal Rainfall. Using some meteorological variables like, sea surface temperature (SST), U-wind at (surface, 700, 850 and 1000), air temperature, specific humidity, ITD and relative humidity. The study adopt  monthly June-October (JJASO) rainfall data and January-May (JFMAM) monthly data of SST, U-wind at (surface, 700, 850 and 1000), air temperature, specific humidity and relative humidity for a period of 31 years (1986-2017) over Ikeja. The proposed ANN model architecture (9-4-1) in training the network using back-propagation algorithm indicated that the statistical performance of the model for predicting 2013 to 2017 (JJASO) rainfall amount indicated as follows; MSE, RMSE, and MAE were 7174, 84.7 and 18.6 respectively with a high statistical coefficient of variation of 94% when the ANN model prediction is validated with the observed rainfall. The result indicated that the propose ANN built network is reliable in prediction of seasonal rainfall amount in Ikeja with a minimal error.

Publisher

Sciencedomain International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3