Predicting Weather Forecasting State Based on Data Mining Classification Algorithms

Author:

Kareem Fairoz Q.,Abdulazeez Adnan Mohsin,Hasan Dathar A.

Abstract

Weather forecasting is the process of predicting the status of the atmosphere for certain regions or locations by utilizing recent technology. Thousands of years ago, humans tried to foretell the weather state in some civilizations by studying the science of stars and astronomy. Realizing the weather conditions has a direct impact on many fields, such as commercial, agricultural, airlines, etc. With the recent development in technology, especially in the DM and machine learning techniques, many researchers proposed weather forecasting prediction systems based on data mining classification techniques. In this paper, we utilized neural networks, Naïve Bayes, random forest, and K-nearest neighbor algorithms to build weather forecasting prediction models. These models classify the unseen data instances to multiple class rain, fog, partly-cloudy day, clear-day and cloudy. These model performance for each algorithm has been trained and tested using synoptic data from the Kaggle website. This dataset contains (1796) instances and (8) attributes in our possession. Comparing with other algorithms, the Random forest algorithm achieved the best performance accuracy of 89%. These results indicate the ability of data mining classification algorithms to present optimal tools to predict weather forecasting.

Publisher

Sciencedomain International

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Models for Identifying Patterns in GNSS Meteorological Data;Communications in Computer and Information Science;2024

2. Short Term Weather Forecasting Comparison Based on Machine Learning Algorithms;2023 Intelligent Methods, Systems, and Applications (IMSA);2023-07-15

3. Systematic Analysis of Weather Prediction for Jaipur City Dataset Using Deep Learning;2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT);2023-05-05

4. Comparative study: Using machine learning techniques about rainfall prediction;AIP Conference Proceedings;2023

5. Analysis of Weather Forecasting and Prediction Using Neural Networks;Intelligent Control, Robotics, and Industrial Automation;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3