Abstract
Fraudulent credit card transaction is still one of problems that face the companies and banks sectors; it causes them to lose billions of dollars every year. The design of efficient algorithm is one of the most important challenges in this area. This paper aims to propose an efficient approach that automatic detects fraud credit card related to insurance companies using deep learning algorithm called Autoencoders. The effectiveness of the proposed method has been proved in identifying fraud in actual data from transactions made by credit cards in September 2013 by European cardholders. In addition, a solution for data unbalancing is provided in this paper, which affects most current algorithms. The suggested solution relies on training for the autoencoder for the reconstruction normal data. Anomalies are detected by defining a reconstruction error threshold and considering the cases with a superior threshold as anomalies. The algorithm's performance was able to detected fraudulent transactions between 64% at the threshold = 5, 79% at the threshold = 3 and 91% at threshold= 0.7, it is better in performance compare with logistic regression 57% in unbalanced dataset.
Publisher
Sciencedomain International
Subject
Geology,Ocean Engineering,Water Science and Technology
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献