Design and Implementation of a Wireless Fluid Level Display System Using Ultrasonic Sensing Technique

Author:

Newton Gesa F.,Aondona Terwase I.,Chile C. A.

Abstract

The wireless fluid level indicator comprises a sensing and transmitting circuit for detecting and transmitting the levels of fluids from a container to the receiving circuit which receives and displays the amount of the measured volume. This has been achieved using an ultrasonic sensor (HC-SR04), a firmware (PIC16F648A/PIC16F876A microcontroller programmed in C/assembly languages), an encoder (HT12E) and a radio frequency (RF) transmitter transmitting at a bandwidth of 433MHz to an RF receiver interfaced with a decoder (HT12D), liquid crystal display (LCD) and a Buzzer. The device when tested measured water levels and transmitted same over a distance of up to 98.5 meters in open areas and up to 50 meters in highly obstructed areas. The average response time was also estimated to be 0.1 second. As a contact-less depth detection system, the device finds useful applications in measurement of fluid levels in homes and industries where concentrates, table water, transmission oils are produced, without affecting the chemical or physical properties of such substances-an advantage over the contact methods used in fluid level detection. Aims: To design and implement a wireless microcontroller based fluid level display system using ultrasonic sensing method. Study Design: By encoding the Transmitter module to sense and detect the amount of water level, while the decoder module decodes the received data and display the result. Place and Duration of Study: Department of Physics, University of Agriculture Makurdi, Benue State, Nigeria, between November 2018 and April 2019. Methodology: An RF transceiver, encoder/decoder (HT12E/HT12D), a 2x16 Liquid display module, 4MHz crystal oscillator, a buzzer and other peripherals were interfaced to two 8-bit controllers; PIC16F648A and PIC16F876A. The controllers were programmed in C/Assembly languages to enable effective communication of the system. The system was then calibrated to read and transmit water level values from a 30-centimeter deep tank over a distance of 1.0 - 98.5 meters. Results: The system was tested to have maximum sensitivity over a distance of 98.5 meters in non-obstructed areas and 50 meters in obstructed areas. The average response time was also estimated to be 0.5 seconds. Conclusion: The design and implementation of a wireless fluid level display system using ultrasonic sensing technique has been successfully done. The system workability is suitable for deployment and usage in domestic and industrial purposes.

Publisher

Sciencedomain International

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3