Predicting Crop Yield Using Deep Learning and Remote Sensing

Author:

Bharadiya Jasmin Praful,Tzenios Nikolaos Tzenios,Reddy Manjunath

Abstract

The art of predicting crop production is done before the crop is harvested. Crop output forecasts will help people make timely judgments concerning food policy, prices in markets, import and export laws, and acceptable warehousing. It is possible to reduce the socioeconomic effects of crop loss brought on by a natural disaster, such as a flood or a drought, and to organize humanitarian food assistance. It has been suggested that deep learning, which lets the model to automatically extricate features and learn from the datasets, could be useful for predicting agricultural yields. This review helps to understand that how vegetation indices and environmental variables affect agricultural output by revealing gaps in our understanding of deep learning methodologies and remote sensing data in a specific area. Literature review of 2011-2022 has been collected from different databases and sites and analyzed to meet the aims of this review. The study mainly focused on the benefits of machine learning, and remote sensing for forecasting crop yield. The most often employed form of remote sensing is satellite technology, namely the usage of the Moderate-Resolution Imaging Spectro radiometer. Vegetation indices referred to as the most often employed attribute for forecasting crop yield, according to the results. This review compares all these techniques and pros and cons related to them.

Publisher

Sciencedomain International

Subject

General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3