Influence of Nano Particle Size on Attenuation and Dielectric Properties of Plantain Husk Powder Using Microwave Techniques at X-Band Frequency

Author:

Yakubu Abubakar,Abbas Zulkifli,Olugbenga Olotu,Sahabi Suleiman

Abstract

Ferrite are conventional materials used for microwave absorption, however, they are expensive, constitute health hazard and pollutes the environment. For these reasons, there is need to explore safe and environmental friendly materials that can serve as radiation absorbers and be used in fabricating microwave devices. In the light of the above, this work was geared towards exploring the use of Unripe Plantain Husk (UPH) waste material for microwave absorber applications. The usability was determined by investigating the dielectric properties and attenuation of the UPH powder with respect to particle size and frequency of operation. The nano particle of the UPH was prepared aseptically by washing in water and acetone, sliced, sundried and grinded. The grinded UPH powder was then subjected to high energy milling using a SPEX 8000D shaker for 4 hours, 8 hours, 10 hours and 12 hours. The milled powder was then prepared into pellets by suppressing with hydraulic press and mold which were then used for characterization. Results from investigation and analysis showed that the milled powder was in nano dimension using transmission electron microscope (TEM). The UPH powder sizes were in the range of 63.35 nm, 52.05 nm, 42.86 nm and 21.43 nm for the 4, 8, 10 and 12 hours milling, respectively. The dielectric constants for the as produced, 4, 8, 10 and 12 hours milled powder were 2.96, 4.97, 5.66, 6.97 and 10.36, respectively. The highest magnitude for attenuation was calculated for the 12 hours milled powder with a value of 14.92 dB and the least attenuation was calculated for the as produced powder with a value of 6.72 dB. Based on the results obtained it is concluded that nano particles of UPH powder is good for microwave attenuation and is a potential for fabricating electronic components.

Publisher

Sciencedomain International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3