Detection and Classification of Brain Tumor in MRI Images Using Wavelet Transform and Convolutional Neural Network

Author:

Sarhan Ahmad M.

Abstract

A brain tumor is a mass of abnormal cells in the brain. Brain tumors can be benign or malignant. Conventional diagnosis of a brain tumor by the radiologist, is done by examining a set of images produced by magnetic resonance imaging (MRI). Many computer-aided detection (CAD) systems have been developed in order to help the radiologist reach his goal of correctly classifying the MRI image. Convolutional neural networks (CNNs) have been widely used in the classification of medical images. This paper presents a novel CAD technique for the classification of brain tumors in MRI images The proposed system extracts features from the brain MRI images by utilizing the strong energy compactness property exhibited by the Discrete Wavelet transform (DWT). The Wavelet features are then applied to a CNN to classify the input MRI image. Experimental results indicate that the proposed approach outperforms other commonly used methods and gives an overall accuracy of 98.5%.

Publisher

Sciencedomain International

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Brain Tumor Classification: A CNN-Based Approach with InceptionV3 and Xception;International Journal of Advanced Research in Science, Communication and Technology;2024-05-11

2. Deep learning model for brain tumour detection;AIP Conference Proceedings;2024

3. An analysis of convolutional neural network and conventional machine learning for multiclass brain tumor detection;AIP Conference Proceedings;2024

4. MRI Brain Tumor Detection and Classification Using U-NET CNN;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

5. Classification of brain tumour based on texture and deep features of magnetic resonance images;Expert Systems;2023-04-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3