Effect of Temperature Changes on the Bacterial and Fungal Succession Patterns during Composting of Some Organic Wastes in Greenhouse

Author:

Chinakwe E.C.,Ibekwe V.I.,Ofoh M.C.,Nwogwugwu N.U.,Adeleye S.A.,Chinakwe P.O.,Nwachukwu I.N.,Ihejirika C.E.

Abstract

Aim: Organic wastes were composted and the effect of temperature changes on the bacterial and fungal succession patterns studied. Study Design: The wastes which included cow dung (CD), pig waste (PW), poultry litter (PL) and source-separated municipal solid waste (MSW) and their combinations: PL+MSW, PW+MSW and CD+MSW were allowed to decompose for 70 days in a greenhouse. Place and Duration of Study: This study was carried out between September 2017 and January 2018, in the greenhouse of the Agricultural Research Farm of Federal University of Technology, Owerri, Nigeria. Methodology: The wastes were allowed to decompose for 70 days in a greenhouse using the modified windrow method of composting. Standard microbiological methods were used to monitor temperature changes in compost piles as well as changes in bacterial and fungal populations. Results: Results revealed that changes in temperature affected microbial composition in the compost piles. The highest temperature recorded was 60oC for cow dung (CD) compost pile while at maturity the temperature in all the compost piles ranged between 27°C to 30°C. Different bacterial and fungal populations were isolated during the thermophilic and mesophilc phases of composting. Bacteria isolates included species of Staphylococcus, Proteus, Klebsiella, Salmonella, Alcaligenes, Serratia, Lactobacillus and Pseudomonas. Others included Enterobacter, Bacillus, Streptococcus, Corynebacterium and Micrococcus spp. Fungal species isolated included Candida, Saccharomyces, Rhizopus, Aspergillus, Mucor and Fusarium. Conclusion: The presence of some plant growth promoting (PGP) bacteria at the end of composting qualifies organic waste composts as effective nutrient sources for crop production and can be considered as potential alternatives to chemical fertilizers.

Publisher

Sciencedomain International

Subject

Pharmaceutical Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3