Abstract
Recent years have witnessed a tremendous development in various scientific and industrial fields. As a result, different types of networks are widely introduced which are vulnerable to intrusion. In view of the same, numerous studies have been devoted to detecting all types of intrusion and protect the networks from these penetrations. In this paper, a novel network intrusion detection system has been designed to detect cyber-attacks using complex deep neuronal networks. The developed system is trained and tested on the standard dataset KDDCUP99 via pycharm program. Relevant to existing intrusion detection methods with similar deep neuronal networks and traditional machine learning algorithms, the proposed detection system achieves better results in terms of detection accuracy.
Publisher
Auricle Technologies, Pvt., Ltd.
Subject
Computer Networks and Communications
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献