AutoQSAR: an automated machine learning tool for best-practice quantitative structure–activity relationship modeling

Author:

Dixon Steven L1,Duan Jianxin2,Smith Ethan3,Von Bargen Christopher D1,Sherman Woody1,Repasky Matthew P3

Affiliation:

1. Schrödinger, Inc., 120 West 45th Street, New York, NY 10036, USA

2. Schrödinger GmbH, Dynamostrasse 13, 68165 Mannheim, Baden-Württemberg, Germany

3. Schrödinger, Inc., 101 SW Main Street, Portland, OR 97204, USA

Abstract

Aim: We introduce AutoQSAR, an automated machine-learning application to build, validate and deploy quantitative structure–activity relationship (QSAR) models. Methodology/results: The process of descriptor generation, feature selection and the creation of a large number of QSAR models has been automated into a single workflow within AutoQSAR. The models are built using a variety of machine-learning methods, and each model is scored using a novel approach. Effectiveness of the method is demonstrated through comparison with literature QSAR models using identical datasets for six end points: protein–ligand binding affinity, solubility, blood–brain barrier permeability, carcinogenicity, mutagenicity and bioaccumulation in fish. Conclusion: AutoQSAR demonstrates similar or better predictive performance as compared with published results for four of the six endpoints while requiring minimal human time and expertise.

Publisher

Future Science Ltd

Subject

Drug Discovery,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3