Quantification of frequent-hitter behavior based on historical high-throughput screening data

Author:

M Nissink J Willem1,Blackburn Sam2

Affiliation:

1. AstraZeneca, Oncology Innovative Medicines, Alderley Park, Macclesfield, SK10 4TG, UK

2. AstraZeneca, Discovery Sciences, Alderley Park, Macclesfield, SK10 4TG, UK

Abstract

Aim: We mine historical high-throughput data to identify and characterize 'frequent hitters', hits that are potentially false-positive results. Background: A key problem in the field of high-throughput screening (HTS) is recognition of frequent hitters, which are false-positive or otherwise anomalous compounds that tend to crop up across many screens. Follow-up of such compounds constitutes a waste of resource and decreases efficiency. Methodology: We describe a systematic retrospective approach to identify anomalous hitter behavior using historical screening data. We take into account the uncertainty that arises if not enough screen data are available and extend implementation to target and technology classes. Conclusion: Use of the descriptor in analyzing high-throughput screen results frees up resource for follow-up of more likely true hits in the downstream hit-deconvolution cascade, thereby increasing efficiency of screen delivery. Although effective, historical data bias can affect the annotation, and we exemplify cases where this happened.

Publisher

Future Science Ltd

Subject

Drug Discovery,Pharmacology,Molecular Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3