Integrating context of tumor biology and vaccine design to shape multidimensional immunotherapies

Author:

Wang Nathaniel S1,Maine Christian J1

Affiliation:

1. Janssen Research & Development, La Jolla, CA 92121, USA

Abstract

Advances in cancer therapy have offered great promise but only modest clinical benefits as monotherapies to date. Patients usually respond well to therapies targeted at specific mutations, but only for a short time. Conversely, immunotherapies help fewer patients, but increase survival. Combination therapies, which could offer the best of both worlds, are currently limited by substantial toxicity. While recent advances in genomics and proteomics have yielded an unprecedented depth of enabling datasets, it has also shifted the focus toward  in silico predictions. Designing the next wave of multidimensional immunotherapies will require leveraging this knowledge while providing a renewed emphasis on tumor biology and vaccine design. This includes careful selection of tumor clinical stage in the context of pre-existing tumor microenvironments, target antigen and technology platform selections to maximize their effect, and treatment staging. Here, we review strategies on how to approach an increasingly complex landscape of immunotherapeutic agents for use in combination therapies.

Publisher

Future Science Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3