Nanodelivery of nitazoxanide: impact on the metabolism of Taenia crassiceps cysticerci intracranially inoculated in mice

Author:

Vinaud Marina Claire1ORCID,Real Daniel2ORCID,Fraga Carolina Miguel2,Lima Nayana F1,Souza Lino Junior Ruy De1,Leonardi Darío23ORCID,J Salomon Claudio23ORCID

Affiliation:

1. Faculty of Biochemistry & Pharmaceutical Sciences, Rosario National University, Suipacha 531, Rosario S2002LRK, Argentina

2. Federal University of Goias Goiania, BR 74605-220, Brazil

3. IQUIR-CONICET, Suipacha 570, 2000, Rosario, Argentina

Abstract

Aim: To formulate nanocapsules and nanoemulsions of nitazoxanide (NTZ) and evaluate the metabolic effect on Taenia crassiceps cysticerci inoculated intracranially into mice. Materials & methods: NTZ nanosystems were formulated through solvent diffusion methodology. These nanoformulations were administered perorally and their impact on glycolysis, the tricarboxylic acid cycle and fatty acid metabolism in T. crassiceps cysticerci was investigated. Results: Gluconeogenesis and protein catabolism were significantly increased by the nanoformulations when compared with the control group and the NTZ-treated group. All the other metabolic pathways were inhibited by the nanoformulation treatments. Conclusion: The remarkable metabolic modifications that occur in this in vivo model through the application of these developed nanosystems confirm their capability to deliver NTZ into targeted tissues.

Publisher

Future Science Ltd

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3