Facile fabrication of an interface for online coupling of microchip CE to surface plasmon resonance

Author:

Liu Xiaojun1,Du Ming1,Zhou Feimeng1,Gomez Frank A2

Affiliation:

1. Department of Chemistry & Biochemistry, California State University, 5151 State University Drive, Los Angeles, CA, 90032-8202, USA

2. Department of Chemistry & Biochemistry, California State University, 5151 State University Drive, Los Angeles, CA, 90032-8202, USA.

Abstract

Background: The aim was to develop a simple route to coupling microchip CE (MCE) to surface plasmon resonance (SPR). MCE is a microfluidic technology that utilizes microfabrication techniques to connect interacting fluid reservoirs. Its advantages include rapid analysis (typically seconds), easy integration of multiple analytical steps and parallel operation. SPR detects changes in refractive index within a short distance from the surface of a thin metal film as variations in light intensity reflected from the back of the film and, thus, does not require labeling. There is a great demand for developing hyphenated techniques like MCE–SPR that are fast, sensitive and inexpensive to analyze biological materials. Materials & Methods: The separation channel and flow cell exist as overlapping regions constructed during the microchip production and buffer solution was delivered mechanically. Such a design has successfully isolated the electrical field inherent in the MCE from the SPR detector. Consequently, the potential interference to the SPR signal (or modulation of the density of surface plasmons at the gold chip) is circumvented. Results: The limits of detection for bovine serum albumin and sodium fluorescein were determined to be 7.5 µM and 3.1 mM, respectively. Conclusion: The technique described, herein, has been successfully applied in the separation of two species. The method offers the advantages of a near zero connection dead volume, electrical shielding from the separation voltage and minimization of the mass transfer effect.

Publisher

Future Science Ltd

Subject

Medical Laboratory Technology,Clinical Biochemistry,General Pharmacology, Toxicology and Pharmaceutics,General Medicine,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3