Systematic computational analysis of structure–activity relationships: concepts, challenges and recent advances

Author:

Peltason Lisa1,Bajorath Jürgen1

Affiliation:

1. Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Dahlmannstr. 2, D-53113 Bonn, Germany.

Abstract

The exploration of structure–activity relationships (SARs) of small molecules is a central aspect of medicinal chemistry. Typically, SARs are analyzed on a one-by-one basis, and chemical intuition and experience play an important role in this process. Since the 1960s, computational approaches have been developed to aid in SAR exploration that largely, but not exclusively, rely on the quantitative (Q)SAR paradigm. Accordingly, QSAR analysis has long been a mainstay of compound optimization efforts. However, the strong compound class dependence of SAR features and their intrinsic heterogeneity often pose severe constraints on the applicability of these methods. In addition to QSAR approaches, conceptually different molecular similarity methods are also applied to identify novel active compounds. In order to complement and further extend the current repertoire of computational methods, SAR analysis functions have recently been introduced that evaluate and compare SAR features on a large scale, extract SAR information from compound data sets and prioritize SARs that are promising targets for optimization. SAR analysis functions are designed to systematically profile and compare SARs contained in different data sets and characterize both global and local SAR features. Numerical SAR analysis is complemented by intuitive graphical representations of SAR landscapes.

Publisher

Future Science Ltd

Subject

Drug Discovery,Pharmacology,Molecular Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3